domingo, 26 de julio de 2009

Política: MARIA LUISA STORANI UNA MUJR LUCHADORA

María Luisa Storani, fue electa en junio último como Diputada Nacional por el Acuerdo Cívico y Social. Estuvimos con ella, en una amena entrevista para conocer un poco de su lucha por la mujer y la niñez, y sus orígenes en política.
Señora nacida en cuna de militantes políticos, quien desde su juventud militó en franja morada, y se involucró con los problemas de su nación.


Periodista: - ¿Cuándo nació y en donde?

Storani: - Naci el 9 de marzo de 1949, en la provincia de Córdoba.


Periodista: - ¿Cómo esta formada su familia?


Storani: - Estoy Casada con Ricardo Campero, tengo 4 hijos (Agustín, Esteban, Magdalena, Juan), 2 nietos, Santiago y Juana, hijos de Magdalena.


Periodista: - ¿Siempre le gustó la política?

Storani: - Yo nací en el seno de una familia radical, donde conversar de la actualidad social, los problemas, era la charla en toda comida. Siempre me intereso los problemas cotidianos de la sociedad. De chicos, mis hermanos y yo participábamos de las campañas políticas de mi padre, Conrado Storani. El se desempeñaba en el sur de Córdoba y nosotros le hacíamos el recuento de votos, recibíamos los cómputos por teléfono, en el departamento de recuentos de la provincia. Ayudábamos voluntariamente.
Manteníamos conversaciones interesantes en todos los momentos álgidos y no álgidos de la política. Hemos tenido sentado a la mesa familiar a Carlos Becerra, por ejemplo, y crecimos con toda esa militancia desde la cuna.
De adolescente, militaba en la universidad, teníamos que cuidarnos en la época del proceso militar; incluso nos llego de cerca amigos desaparecidos, nos dolía el no respeto de los derechos humanos.
La política en mi vida ha sido todo, demasiado cotidiano. Participe de la construcción política del país. Somos 8 hermanos, y 6 nos dedicamos a la política dentro del seno del radicalismo, de manera activa, los otros 2 acompañan. También conocí a mi marido en la política.

Periodista: - ¿Cómo conoció a Ricardo Campero, su marido?

Storani: - A Ricardo lo conocí en la época del “Cordobazo”. El fue el fundador de Franja Morada en Rosario y se juntó con mi hermano Federico Storani y tuvieron que huir perseguidos a Buenos Aires. Allí los tomaron presos, en la cárcel de Villa Devoto, y cuando fui a visitar a mi hermano, conocí al que hoy es mi esposo.
Mi hermano Freddy bromeaba, diciendo, porque somos 5 mujeres, que él tenia que caer preso para que sus hermanas consiguieran marido.

Periodista: - ¿Y sus hijos, también se dedicaron a la política?



Storani: - Mis hijos son sensibles, les interesa la realidad social, la discriminación, el medio ambiente, la justicia social. Eso es para nosotros la política.
Los hijos que tenemos con Ricardo, vivieron una infancia similar a la mía: mesas familiares donde se habla del país, de los problemas de la sociedad. Por lo tanto, se involucraron también en política, desde lo social. Dos de ellos están muy comprometidos, muy sensibilizados, y los otros ayudan modestamente.

Periodista: - Usted está actualmente a cargo de la Secretaría de la mujer en el Comité Nacional de la UCR: ¿Desde cuándo y cómo llegó?



Storani: - Yo soy una defensora de los derechos de la mujer hace años, defiendo y estudio los géneros. También me preocupa la niñez y la adolescencia. Mis temas en política son los “géneros”.
Esta secretaria de la mujer ha sido creada hace muchos años, pero desde el año 2000, y no se por que motivos, quedó acéfala. Condujeron esta Comisión mujeres y legisladoras importantísimas, como por ejemplo Florentina Gómez Miranda. De pronto quedó acéfala y desde el 2008 estoy al frente, gracias a la convocatoria del Senador Gerardo Morales. Trabajamos en la ley de violencia familiar, en las cuestiones de género, salud reproductiva, niñez y adolescencia.
El senador me convoco porque yo estaba participando en estos temas de violencia familiar, niñez, adolescencia, a través de una organización en San Fernando, llamada C.D.E.M. La invitación fue de radical a radical. Había sido promotora, junto a otros legisladores de la ley 25486. Entonces ahí el senador me dijo como puede ser que la secretaria de la mujer del partido esté acéfala, vos deberías hacerte cargo. Y yo acepté.

Periodista: - ¿Cuáles son las funciones de esta comisión?

Storani: - Se brinda asesoramiento a las mujeres en los casos de violencia. Trabajamos conjuntamente con la asociación Civil que te mencione, brindando asesoramiento integral y especializado (abogados, psicólogos, asistentes sociales).
También nos preocupamos, en trabajar un tema, que para nosotras, las mujeres, es importante: el tema del cupo y la paridad. Todo a través de la secretaria de la mujer. Éramos una comisión pequeña de mujeres radicales y decidimos entrar a la secretaria de la mujer, para trabajar por estos temas. Vienen a esta secretaria y tratamos de darle solución mujeres de distintos puntos del país.

Periodista: - ¿A que se refiere con el tema del cupo y la paridad?

Storani: - Me refiero a una paridad de un 50% de mujeres y 50% de hombres en las listas, en el partido radical.
Íbamos a lanzar oficialmente esta secretaria de la mujer y los objetivos a trabajar de ahora en más, y el día previsto, en el cual habíamos invitado a muchas organizaciones sociales, empeora el estado de salud del Dr. Raul Alfonsin falleciendo horas después.

Periodista: - La secretaria de la mujer de la ucr esta funcionando, por lo que puede advertirse.

Storani: - Si, hemos presentado un proyecto en la convención de Mar del Plata de los convencionales nacionales, donde proponemos la paridad en las listas y en las cámaras; además de presentar trabajos sobre el genero en el partido que será tratado en el mes de noviembre. Se propone paridad en comisión directiva, tribunal de faltas, etc. En todo el ámbito de la ucr. Tomamos los lineamientos de paridad planteados por la CEPAL en sus documentos del año 2007.

Periodista: - ¿Nos puede comentar un poquito sobre la labor de CDEM?

Storani: - Esta Asociación Civil fue creada en 1991, y se han desarrollado desde entonces actividades para promover la igualdad de oportunidades en los diferentes ámbitos de la vida. Formamos parte de diversas redes sociales a través de las cuales intentamos transmitir nuestra visión y valores. C-D.E.M. es integrante de las siguientes redes: Red de violencia de la Región Metropolitana Norte, Red de Infancia y Adolescencia de la Región Metropolitana norte, Red de Niñez y Adolescencia de San Fernando, Red No a la trata de mujeres y niñas.
La actual presidenta de la asociación es Alicia Kaplan.

Periodista: - Para cerrar la entrevista, un deseo para este próximo mandato:

Storani: - Trabajar por una democracia igualitaria, no solo en los géneros, sino en todo lo que hace a niñez, adolescencia, discriminación.




martes, 21 de julio de 2009

Seminario " Discutir a Alfonsín: repensando el legado de los años ochenta en la democracia argentina".

Actividad gratuita.
Requiere inscripción previa

Programa:

9-9.30 h: Presentación y BienvenidaSebastián Etchemendy (Director de la Maestría en Ciencia Política UTDT)María Victoria Murillo (Columbia University y Profesora Visitante UTDT, Becaria Fulbright)

9.30-11.15 h: Derechos y Política (coordina Catalina Smulovitz UTDT)
• Roberto Gargarella (UTDT-UBA): “Alfonsín: constitución y democracia”.• Mario Pecheny (UBA-Conicet): “Parece que no fue ayer: el legado político de la Ley de Divorcio en perspectiva de derechos sexuales”.• Marcos Novaro (Conicet-UBA): “Formación, desarrollo y declive del consenso alfonsinista sobre derechos humanos”.• Gabriel Kessler (UGral Sarmiento-Conicet): “Entre el terrorismo de Estado y la constitución de la `inseguridad´: delito urbano y políticas en el gobierno de Alfonsín”.
11.30- 13.15 h: Partidos y Representación (coordina Ana Maria Mustapic UTDT)
• Gerardo Aboy (UNSAM): “Raúl Alfonsín y la fundación de la Segunda República”.• Miguel De Luca (UBA): “Partidos y elecciones en los años de Alfonsín”.• Javier Zelaznik (UTDT): “ Alfonsín, o la construcción de la democracia posible”.• Marcelo Leiras (UDESA): “La idea de un sistema de partidos”.

13.15-14.30 h: Almuerzo

14.30 -16.30 h: Actores y Políticas Públicas (coordina Sebastian Etchemendy UTDT)
• Tulia Falleti (University of Pensilvania): “Lucha de titanes. Alfonsín y los gobernadores: Las reformas federales que fueron y las que pudieron haber sido”.• Victoria Murillo (Fulbright, UTDT, Columbia University): “¿Corporaciones versus partidos? Políticas públicas en democracia”.• Pablo Pinto (Columbia): “Votando con los pies: movilidad internacional e influencia política”.• Jorge Battaglino (UTDT):“La política militar de Alfonsín: el control civil sobre las fuerzas armadas en la Argentina de los 80”.

16.30-17.15h: Café

17.15-19.00 h: Mesa redonda final: La experiencia pública desde el mundo intelectual y académico
Juan Carlos Torre (UTDT), Emilio de Ipola (UBA), Pablo Gerchunoff (UTDT)

Fecha:Jueves 30/07/2009 09.00 hs.
Lugar:Miñones 2177
Organizador:Departamento de Ciencia Política y Estudios Internacionales
Contacto:Vanesa Gómezposgradopolitica@utdt.edu


Para mayor información:

http://www.utdt.edu/ver_evento_agenda.php?id_evento_agenda=397&id_item_menu=443

viernes, 10 de julio de 2009

130 Chapter 4. Models for Binary Outcomes
Then, the discrete change for a change of δ in xk equals
ΔPr (y = 1 x)
Δxk
= Pr (y = 1 x, xk + δ) − Pr (y = 1 x, xk)
which can be interpreted as
For a change in variable xk from xk to xk + δ, the predicted probability of an event
changes by ΔPr(y=1x)
Δxk
, holding all other variables constant.
As shown in Figure 4.5, in general, the two measures of change are not equal. That is,
∂ Pr(y = 1 x)
∂xk =
ΔPr (y = 1 x)
Δxk
The measures differ because the marginal change is the instantaneous rate of change, while the
discrete change is the amount of change in the probability for a given finite change in one independent
variable. The two measures are similar, however, when the change occurs over a region of the
probability curve that is roughly linear.
The value of the discrete change depends on
1. The start level of the variable that is being changed. For example, do you want to examine the
effect of age beginning at 30? At 40? At 50?
2. The amount of change in that variable. Are you interested in the effect of a change of 1 year
in age? Of 5 years? Of 10 years?
3. The level of all other variables in the model. Do you want to hold all variables at their mean?
Or, do you want to examine the effect for women? Or, to compute changes separately for men
and women?
Accordingly, a decision must be made regarding each of these factors. See Chapter 3 for further
discussion.
For our example, let’s look at the discrete change with all variables held at their mean, which
is computed by default by prchange, where the help option is used to get detailed descriptions of
what the measures mean:
. prchange, help
logit: Changes in Predicted Probabilities for lfp
min->max 0->1 -+1/2 -+sd/2 MargEfct
k5 -0.6361 -0.3499 -0.3428 -0.1849 -0.3569
k618 -0.1278 -0.0156 -0.0158 -0.0208 -0.0158
age -0.4372 -0.0030 -0.0153 -0.1232 -0.0153
wc 0.1881 0.1881 0.1945 0.0884 0.1969
hc 0.0272 0.0272 0.0273 0.0133 0.0273
lwg 0.6624 0.1499 0.1465 0.0865 0.1475
inc -0.6415 -0.0068 -0.0084 -0.0975 -0.0084
NotInLF inLF
Pr(yx) 0.4222 0.5778
This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,
either electronically or in printed form, to others.
4.6 Interpretation using predicted values 131
k5 k618 age wc hc lwg inc
x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129
sd(x)= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348
Pr(yx): probability of observing each y for specified x values
AvgChg: average of absolute value of the change across categories
Min->Max: change in predicted probability as x changes from its minimum to
its maximum
0->1: change in predicted probability as x changes from 0 to 1
-+1/2: change in predicted probability as x changes from 1/2 unit below
base value to 1/2 unit above
-+sd/2: change in predicted probability as x changes from 1/2 standard
dev below base to 1/2 standard dev above
MargEfct: the partial derivative of the predicted probability/rate with
respect to a given independent variable
First consider the results of changes from the minimum to the maximum. There is little to be learned
by analyzing variables whose range of probabilities is small, such as hc, while age, k5, wc, lwg,
and inc have potentially important effects. For these we can examine the value of the probabilities
before and after the change by using the fromto option:
. prchange k5 age wc lwg inc, fromto
logit: Changes in Predicted Probabilities for lfp
from: to: dif: from: to: dif: from:
x=min x=max min->max x=0 x=1 0->1 x-1/2
k5 0.6596 0.0235 -0.6361 0.6596 0.3097 -0.3499 0.7398
age 0.7506 0.3134 -0.4372 0.9520 0.9491 -0.0030 0.5854
wc 0.5216 0.7097 0.1881 0.5216 0.7097 0.1881 0.4775
lwg 0.1691 0.8316 0.6624 0.4135 0.5634 0.1499 0.5028
inc 0.7326 0.0911 -0.6415 0.7325 0.7256 -0.0068 0.5820
to: dif: from: to: dif:
x+1/2 -+1/2 x-1/2sd x+1/2sd -+sd/2 MargEfct
k5 0.3971 -0.3428 0.6675 0.4826 -0.1849 -0.3569
age 0.5701 -0.0153 0.6382 0.5150 -0.1232 -0.0153
wc 0.6720 0.1945 0.5330 0.6214 0.0884 0.1969
lwg 0.6493 0.1465 0.5340 0.6204 0.0865 0.1475
inc 0.5736 -0.0084 0.6258 0.5283 -0.0975 -0.0084
NotInLF inLF
Pr(yx) 0.4222 0.5778
k5 k618 age wc hc lwg inc
x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129
sd(x)= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348
We learn, for example, that varying age from its minimum of 30 to its maximum of 60 decreases
the predicted probability from .75 to .31, a decrease of .44. Changing family income (inc) from its
minimum to its maximum decreases the probability of a women being in the labor force from .73 to
.09. Interpreting other measures of change, the following interpretations can be made:
Using the unit change labeled -+1/2: For a woman who is average on all characteristics,
an additional young child decreases the probability of employment by .34.
Using the standard deviation change labeled -+1/2sd: A standard deviation change in
age centered around the mean will decrease the probability of working by .12, holding
other variables to their means.
Using a change from 0 to 1 labeled 0->1: If a woman attends college, her probability
of being in the labor force is .18 greater than a woman who does not attend college,
holding other variables at their mean.
This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,
either electronically or in printed form, to others.
132 Chapter 4. Models for Binary Outcomes
What if you need to calculate discrete change for changes in the independent values that are not
the default for prchange (e.g., a change of 10 years in age rather than 1 year)? This can be done in
two ways:
Nonstandard discrete changes with prvalue command The command prvalue can be used to
calculate the change in the probability for a discrete change of any magnitude in an independent
variable. Say we want to calculate the effect of a ten-year increase in age for a 30-year old woman
who is average on all other characteristics:
. prvalue, x(age=30) save brief
Pr(y=inLFx): 0.7506 95% ci: (0.6771,0.8121)
Pr(y=NotInLFx): 0.2494 95% ci: (0.1879,0.3229)
. prvalue, x(age=40) dif brief
Current Saved Difference
Pr(y=inLFx): 0.6162 0.7506 -0.1345
Pr(y=NotInLFx): 0.3838 0.2494 0.1345
The save option preserves the results from the first call of prvalue. The second call adds the dif
option to compute the differences between the two sets of predictions. We find that an increase in
age from 30 to 40 years decreases a woman’s probability of being in the labor force by .13.
Nonstandard discrete changes with prchange Alternatively, we can use prchange with the
delta() and uncentered options. delta(#) specifies that the discrete change is to be computed
for a change of # units instead of a one-unit change. uncentered specifies that the change should
be computed starting at the base value (i.e., values set by the x() and rest() options), rather than
being centered around the base. In this case, we want an uncentered change of 10 units, starting at
age=30:
. prchange age, x(age=30) uncentered d(10) rest(mean) brief
min->max 0->1 +delta +sd MargEfct
age -0.4372 -0.0030 -0.1345 -0.1062 -0.0118
The result under the heading +delta is the same as what we just calculated using prvalue.
4.7 Interpretation using odds ratios with listcoef
Effects for the logit model, but not probit, can be interpreted in terms of changes in the odds. Recall
that for binary outcomes, we typically consider the odds of observing a positive outcome versus a
negative one:
Ω =
Pr(y = 1)
Pr(y = 0)
=
Pr(y = 1)
1 − Pr(y = 1)
This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,
either electronically or in printed form, to others.
4.7 Interpretation using odds ratios with listcoef 133
Recall also that the log of the odds is called the logit and that the logit model is linear in the logit,
meaning that the log odds are a linear combination of the x’s and β’s. For example, consider a logit
model with three independent variables:
ln

Pr(y = 1 x)
1 − Pr(y = 1 x)
= lnΩ(x) = β0 + β1x1 + β2x2 + β3x3
We can interpret the coefficients as
For a unit change in xk, we expect the logit to change by βk, holding all other variables
constant.
This interpretation does not depend on the level of the other variables in the model. The problem
is that a change of βk in the log odds has little substantive meaning for most people (including the
authors of this book). Alternatively, by taking the exponential of both sides of this equation, we can
create a model that is multiplicative instead of linear, but in which the outcome is the more intuitive
measure, the odds:
Ω(x, x2) = eβ0eβ1x1eβ2x2eβ3x3
where we take particular note of the value of x2. If we let x2 change by 1,
Ω(x, x2 + 1) = eβ0eβ1x1eβ2(x2+1)eβ3x3
= eβ0eβ0eβ1x1eβ2x2eβ2eβ3x3
which leads to the odds ratio:
Ω(x, x2 + 1)
Ω(x, x2)
= eβ0eβ1x1eβ2x2eβ2eβ3x3
eβ0eβ1x1eβ2x2eβ3x3
= eβ2
Accordingly, we can interpret the exponential of the coefficient as
For a unit change in xk, the odds are expected to change by a factor of exp(βk), holding
all other variables constant.
For exp(βk) > 1, you could say that the odds are “exp(βk) times larger”. For exp(βk) < 1,
you could say that the odds are “exp(βk) times smaller”. We can evaluate the effect of a standard
deviation change in xk instead of a unit change:
For a standard deviation change in xk, the odds are expected to change by a factor of
exp(βk × sk ), holding all other variables constant.
The odds ratios for both a unit and a standard deviation change of the independent variables can be
obtained with listcoef:
This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,
either electronically or in printed form, to others.
134 Chapter 4. Models for Binary Outcomes
. listcoef, help
logit (N=753): Factor Change in Odds
Odds of: inLF vs NotInLF
lfp b z P>z e^b e^bStdX SDofX
k5 -1.46291 -7.426 0.000 0.2316 0.4646 0.5240
k618 -0.06457 -0.950 0.342 0.9375 0.9183 1.3199
age -0.06287 -4.918 0.000 0.9391 0.6020 8.0726
wc 0.80727 3.510 0.000 2.2418 1.4381 0.4500
hc 0.11173 0.542 0.588 1.1182 1.0561 0.4885
lwg 0.60469 4.009 0.000 1.8307 1.4266 0.5876
inc -0.03445 -4.196 0.000 0.9661 0.6698 11.6348
b = raw coefficient
z = z-score for test of b=0
P>z = p-value for z-test
e^b = exp(b) = factor change in odds for unit increase in X
e^bStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X
Examples of interpretations are
For each additional young child, the odds of being employed decrease by a factor of
.23, holding all other variables constant.
For a standard deviation increase in the log of the wife’s expected wages, the odds of
being employed are 1.43 times greater, holding all other variables constant.
Being ten years older decreases the odds by a factor of .53 (=e[−.063]×10), holding all
other variables constant.
Other ways of computing odds ratios Odds ratios can also be computed with the or option for
logit. This approach does not, however, report the odds ratios for a standard deviation
change in the independent variables.
Multiplicative coefficients
When interpreting the odds ratios, remember that they are multiplicative. This means that positive
effects are greater than one and negative effects are between zero and one. Magnitudes of positive
and negative effects should be compared by taking the inverse of the negative effect (or vice versa).
For example, a positive factor change of 2 has the same magnitude as a negative factor change of
.5=1/2. Thus, a coefficient of .1=1/10 indicates a stronger effect than a coefficient of 2. Another
consequence of the multiplicative scale is that to determine the effect on the odds of the event not
occurring, you simply take the inverse of the effect on the odds of the event occurring. listcoef
will automatically calculate this for you if you specify the reverse option:
This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,
either electronically or in printed form, to others.
4.7 Interpretation using odds ratios with listcoef 135
. listcoef, reverse
logit (N=753): Factor Change in Odds
Odds of: NotInLF vs inLF
lfp b z P>z e^b e^bStdX SDofX
k5 -1.46291 -7.426 0.000 4.3185 2.1522 0.5240
k618 -0.06457 -0.950 0.342 1.0667 1.0890 1.3199
age -0.06287 -4.918 0.000 1.0649 1.6612 8.0726
wc 0.80727 3.510 0.000 0.4461 0.6954 0.4500
hc 0.11173 0.542 0.588 0.8943 0.9469 0.4885
lwg 0.60469 4.009 0.000 0.5462 0.7010 0.5876
inc -0.03445 -4.196 0.000 1.0350 1.4930 11.6348
Note that the header indicates that these are now the factor changes in the odds of NotInLF versus
inLF, whereas before we computed the factor change in the odds of inLF versus NotInLF. We can
interpret the result for k5 as follows:
For each additional child, the odds of not being employed are increased by a factor of
4.3 (= 1/.23), holding other variables constant.
Effect of the base probability
The interpretation of the odds ratio assumes that the other variables have been held constant, but it
does not require that they be held at any specific values. While the odds ratio seems to resolve the
problem of nonlinearity, it is essential to keep the following in mind: A constant factor change in
the odds does not correspond to a constant change or constant factor change in the probability. For
example, if the odds are 1/100, the corresponding probability is .01.9 If the odds double to 2/100,
the probability increases only by approximately .01. Depending on one’s substantive purposes, this
small change may be trivial or quite important (such as when one identifies a risk factor that makes
it twice as likely that a subject will contract a fatal disease). Meanwhile, if the odds are 1/1 and
double to 2/1, the probability increases by .167. Accordingly, the meaning of a given factor change
in the odds depends on the predicted probability, which in turn depends on the levels of all variables
in the model.
Percent change in the odds
Instead of a multiplicative or factor change in the outcome, some people prefer the percent change,
100 [ exp (βk × δ) − 1]
which is listed by listcoef with the percent option.
9The formula for computing probabilities from odds is p = Ω
1+Ω.
This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,
either electronically or in printed form, to others.
136 Chapter 4. Models for Binary Outcomes
. listcoef, percent
logit (N=753): Percentage Change in Odds
Odds of: inLF vs NotInLF
lfp b z P>z % %StdX SDofX
k5 -1.46291 -7.426 0.000 -76.8 -53.5 0.5240
k618 -0.06457 -0.950 0.342 -6.3 -8.2 1.3199
age -0.06287 -4.918 0.000 -6.1 -39.8 8.0726
wc 0.80727 3.510 0.000 124.2 43.8 0.4500
hc 0.11173 0.542 0.588 11.8 5.6 0.4885
lwg 0.60469 4.009 0.000 83.1 42.7 0.5876
inc -0.03445 -4.196 0.000 -3.4 -33.0 11.6348
With this option, the interpretations would be
For each additional young child, the odds of being employed decrease by 77%, holding
all other variables constant.
A standard deviation increase in the log of the wife’s expected wages increases the odds
of being employed by 83%, holding all other variables constant.
Percentage and factor change provide the same information; which you use for the binary model is
a matter of preference. While we both tend to prefer percentage change, methods for the graphical
interpretation of the multinomial logit model (Chapter 6) only work with factor change coefficients.
4.8 Other commands for binary outcomes
Logit and probit models are the most commonly used models for binary outcomes and are the only
ones that we consider in this book, but other models exist that can be estimated in Stata. Among
them, cloglog assumes a complementary log-log distribution for the errors instead of a logistic or
normal distribution. scobit estimates a logit model that relaxes the assumption that the marginal
change in the probability is greatest when Pr(y = 1) = .5. hetprob allows the assumed variance
of the errors in the probit model to vary as a function of the independent variables. blogit and
bprobit estimate logit and probit models on grouped (“blocked”) data. Further details on all of
these models can be found in the appropriate entries in the Stata manuals.
This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,
either electronically or in printed form, to others.

lunes, 6 de julio de 2009

Card

Table 3 presents a series of reduced form education and earnings equations and the correpondin structural estimates of the return to education, using college proximity as an instrumental variable completed education. Columns 1 and 2 show the coefficients of an indicator for college proximity in models for years of schooling. Columns 3 and 4 show the coefficients of the college proximity variable in reduced form wage equations ( i.e models that exclude education). Finally, columns 5 and 6 report the iv estimates of the return to education: these are simply the ratios of the corresponding reduced form coefficients in the earnings and schooling equations. The modes in columns 1, 3 and 5 exclude parental education and family structure variable while the models in colums 2, 4 and 6 include these variables.
Two alternative specifications are reported in the upper and lower panels of the table. The models in the upper panel (panel A) include the conventional measures of experience and experience – squared constructed from observerd age and education.
If schooling is measured with error, however, then experience is also mismeasured --- suggesting possible biases in the reduced form models in panel A. By the same token, if education is truly endogenous in the earnings equation, the so is experience, since experience is mechanically related to education. Therefore, in the lower panel (panel B) I have estimad models that instrument experience and experience – squared with age and age – squared.
Regardless of the inclusion or exclusion of family background variables, and irrespective of the treatment of experience, the conclusions from table 3 are similar. Growing up near a college has strong positive effect on both education (0.32 to 0.38 years of schooling) and earnings (4.2 to 4.8 percent). The use of college proximity as an exogenous determiant of schooling yields IV estimates of the return to education in the range of 0.12 to 0.14. These estimates are 50 -60 percent higher than the corresponding ols estimates----about the same relative ratio as reported by butcher and case (1993), Kane and Rouse (1993), and Angrist and Krueguer /1993). Nevertheless, the standard error of the IV estimates are relatively large, and one cannot reject the hypothesis that differences between the IVand OLS estimates are due to sampling error.
--------------------------
Under the null hypothesis that the OLS estimates are consistent the variance of the difference between the IV and OLS estimates of the return to education is the difference in their variances, which is approximately equal to the variance of the IV estimate.